首页 学术研究∶资源配置与管理

30三种固体废弃物综合利用的初步研究*


张万钧,郭育文,王斗天,黄明勇,张民胜,马家勇

(天津市泰达盐碱地绿化研究中心,天津 300457)

摘要:从环境建设的可持续发展出发,结合天津开发区在基础设施及园林绿化建设中面临土源紧缺以及周边地区存在大量的海湾泥、粉煤灰、碱渣土等固体废弃物的现实,在详细研究了 3 种废物的物理、化学性质的基础上探讨了用这些废物代替农田客土的可行性。实验及推广应用结果表明,这些废物按适当比例混合后能够形成一种可替代种植客土的新型土壤,这种新型土壤的最佳配比(即海湾泥与粉煤灰或碱渣土)比例为 3:1,同时该配比基质对植物生长的适宜性优于滨海盐土。

关键词:固体废弃物;新土源;海湾泥;碱渣土;粉煤灰

中图分类号:X705

文献标识码:A

文章编号:1000-3037(2001)03-0283-05

1 概况

  天津经济技术开发区(以下简称开发区)处在渤海湾的滨海淤泥质滩涂地区。地势低洼(大沽高程 2.5m),地下水埋藏浅(距地面 0.5~1.0m),矿化度高(70~108g/L),坡降小于 1/10000。建区前是塘沽盐场的卤化池,土壤含盐量高,1m 土体平均含盐量为 4.73%,最高达 7% 以上,为 Na-Cl 型滨海盐土,土壤粘重,通气透水不良,蒸发量大(蒸降比大于 3)[1]

  由于地势低,进行经济开发面临的首要任务是抬高地面 1.5m。建区之初的做法是从邻近地区购买农田土壤,其中表土作为绿化用土,下层土作为垫地回填土。因而土源问题自始至终都是开发区经济和环境建设快速发展的制约因素。目前待开发的面积仍有 21.6km2,尚需“客土”3240万m3 以上,按取耕层 1m 厚的表土计算,将要毁掉农田约 3240hm2。显然,这种“客土填垫”的做法存在着“在一方建设生态环境的同时,而另一方却在破坏生态环境”的负面效应,并且使开发建设的综合成本增加。与此同时,在开发区周边地区,海湾泥、粉煤灰、碱渣土等固体废弃物资源丰富,它们占用大量土地,严重污染环境,多年来,一直未得到有效利用,严重制约了当地经济发展、城市规划和生态环境建设以及居民生活,急需消纳,使之资源化。

  本研究从可持续发展的角度出发,探索利用本地储量很大的海底淤泥、粉煤灰和碱渣土替代种植“客土”。在深入揭示海湾泥、粉煤灰和碱渣土理化性质的基础上,通过合理配方、培肥等技术措施将三种废弃物合理配比综合利用,使之成为适宜于植物生长的新型种植基质——“新土源”。

2 三种固体废弃物的特性

  海湾泥属于水下盐渍淤泥,由近代河流冲积物经海水中盐分的絮凝作用沉积而成,它处于滨海盐土地质过程中的水下堆积阶段,其粘粒含量高,质地粘重,结构性差,比重和容重较大,孔隙度和渗透系数小,含盐量高,为 Na-Cl 型,自然脱盐率极差,但它具备土壤胶体的性质。

  碱渣是“苏尔威”法生产纯碱的排放物。其外观呈膏状,含水量高,手感滑腻。基本物质是 CaCO3,占全量的 86.2%,易溶性盐以 CaCl2 为主,占易溶盐全量的 92.3%,同时含有多种植物所必须的微量元素,如 Mn、Zn 等,重金属 Ni、Cu、Pb、Cr、Zn、Cd、Hg 等的含量均达国标 1~2 级标准。堆积时间较短的全盐量为 13% 以上;pH 值呈强碱性,结持力差,但活性 Ca2+含量高。

  碱渣土以碱渣为原料,掺入一定量的粉煤灰和固化剂经过搅和掺拌工艺加工而成,目的是增加其渗透性、水稳性和承载力。这对改善土壤结构、理化性状,尤其对改良和防止海湾泥的脱盐碱化十分有利。

  粉煤灰是煤炭经高温燃烧后形成的外观相近、颗粒较细但不均匀的多相混合物,其化学组成类似于粘土的化学组成,主要包括 SiO2、Al2O3、Fe2O3、CaO,粉煤灰中的无定形相的玻璃体约占粉煤灰总量的 50%~80%,是粉煤灰的主要矿物成分,蕴含有较高的化学内能,具有良好的化学活性,其本身无水硬性,在潮湿环境能与 Ca(OH)2 等发生反应,生成一系列水化产物——凝胶[2]。粉煤灰的比重、干容重均小于普通种植土,质地粗、渗透性好,粉煤灰中的硅酸盐矿物和碳粒具有多孔性,这种多孔性是土壤本身的硅酸盐矿物所不具备的,而且,粉煤灰粒子之间的孔度一般也大于粘结了的土壤孔度。

  从 3 种废物各自的理化特性看,它们单独存在时,均不能满足植物的生长,但混合物在性质上则具有“优势互补”的效应。

3“新土源”的理化性质

  为了探明 3 种废物作为种植基质的可行性 ,1992 年开始进行室内实验、盆栽实验、田间试验,在着重探讨了混合基质的脱盐率、离子组成变化、pH 值变化等性质的基础上筛选适宜比例,并在生产中进行应用推广。

3.1 离子组成的变化

  通过掺拌,使混合物中活性钙离子含量增加,它有效改变了海湾泥中的离子组成,土壤胶体钠碱化度大大降低[3、4],同时混合体 Na 阳离子所占比例降低,且随着洗盐的进行,“新土源”中 Na 所占比例逐步下降,而滨海盐土由于积盐与脱盐的交替进行,使一定数量的钠离子进入土壤吸收性复合胶体中,Na 比例则明显增加(表 1),这种离子组成的改变对滨海盐土,尤其是海湾泥的改良利用,抑制其脱盐后的碱化现象以及对植物的生长均具有重要意义。

表 1“新土源”与滨海盐土离子组成间的比较
Table.Comparison of the ion component of "artificial" soil and coastal solonchak

   离子 CO32-
(%)
HCO3-
(%)
CL-
(%)
SO42- Ca2+
(%)
Mg2+
(%)
K++Na+
(%)
Na+ 占阳离子百分比
新土源 1996 秋 0.028 0.48 0.24 0.15 0.05 0.16 44.8
1997 秋 0 0.027 0.023 0.3 0.076 0.024 0.036 26.5
1998 春 0 0.027 0.067 0.2 0.078 0.023 0.0044 4.2
1998 秋 0 0.021 0.069 0.2 0.075 0.025 0.016 13.8
滨海盐土 1996 秋 0.00048 0.025 2.02 0.26 0.12 0.10 0.81 78.6
1997 秋 0.0096 0.037 0.053 0.020 0.0020 0.0022 0.059 93.4
1998 春 0.0036 0.075 0.065 0.045 0.003 0.0019 0.088 94.7
1998 秋 0.0094 0.048 0.013 0.02 0.0019 0.0014 0.039 92.2

3.2 结构、脱盐速率和 CEC 的变化

  实践表明,用低容重、大孔隙度的粉煤灰或碱渣土作为新土源的组成部分,将其按一定比例掺拌后极明显地改变混合物的渗透系数,使脱盐速率加快。表 2 显示,混合后的第 90 天各组合的全盐含量由起始的 4%~5% 下降至 1% 以下。同时掺拌后各混合物组合的阳离子交换量绝大部分在 13~20me/100g 土范围内,基质质地良好。综合分析各配比基质的碱化度、脱盐率、容重和阳离子交换量后,在海湾泥中掺入粉煤灰或碱渣土的比例以 3∶1 为宜。

表 2 不同比例混合物的容量、脱盐速率和 CEC 的比较
Table.Comparison of different proportional mixtures of bulk weight,desalinization ratio and CEC

配比 海∶粉 海∶碱 海∶粉∶碱
2∶1 3∶1 4∶1 2∶1 3∶1 4∶1 1∶1∶1 2∶1∶1 2∶2∶1
容量 (g/cm3) 0.92 1.00 1.02 0.89 0.98 0.92 0.78 0.81 0.81
脱盐率 (%) 90 96 97 94 94 87 93 80 95
阳离子交换量(me/100g 土) 13.79 14.84 16.26 19.62 20.07 20.09 18.46 17.42 16.16
钠碱化度(试验第三年) 8.09 3.83 4.89 7.14 6.95 8.46 7.60 9.85 7.54

3.3 pH值的变化

  表 3 的结果表明,粉煤灰、碱渣土起始的 pH 值很高,分别为 8.55、8.7。海湾泥在最初 100 天的洗盐过程中 pH 值呈持续上升过程,从最初的 8.17 升至 8.7 左右,然后趋于稳定状态,表现出脱盐碱化的特征。而掺拌后的 pH 值变化规律则与其单独存在时有明显的不同,表现为 3 种废弃物在掺拌的条件下脱盐碱化出现的时间提前,持续的时间明显缩短,碱化强度小等特征,如表 2 所示,掺拌后,所有的配比在第 3 年时的碱化度均小于 10%,而当地的种植土为 19.5%,开始表现碱化,海湾泥则明显碱化,其碱化度达 42.01%,其中又以海湾泥与粉煤灰按 2∶1、3∶1 以及海湾泥与碱渣土按 3∶1 的掺拌比例在抑制碱化方面表现最好,它们的 pH 值在第 66~92 天时开始下降,然后稳定在 8.30 以下(表 3),这是滨海盐土所不具备的。

表 3 不同比例配置而成混合物的 pH 值随时间的变化
Table.Trend of pH changes of different proportional mixtures with time

配比    A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
时间(天) 0 8.32 8.21 8.22 8.44 8.45 8.47 8.64 8.57 8.59 8.17 8.55 8.70
66 8.50 8.57 8.70 8.68 8.61 8.63 8.85 8.70 8.73 8.57 8.82 9.03
92 8.59 8.36 8.51 8.49 8.39 8.47 8.56 8.39 8.51 8.72 8.42 8.75
276 8.27 8.37 8.34 8.31 8.29 8.33 8.34 8.31 8.40 8.71 8.54 8.46
412 8.11 8.21 8.21 8.38 8.28 8.25 8.53 8.35 8.43 8.56 8.28 8.48
675 8.12 8.22 8.25 8.02 8.28 8.40 8.38 8.47 8.23 8.72 8.32 8.64

4 田间试验结果分析

  田间试验表明,3∶1 混合物的性质、变化规律与盆栽试验结论相一致∶盐份含量随着改良时间的延续而降低 ,pH 值在试验初期仅 40~60cm 层次有跃升现象,然后呈下降趋势,而 0~40cm 内则持续下降,进而趋于相对稳定状态,此种特征对于控制混合物的脱盐碱化十分有利。混合基质的脱盐速率受填垫厚度的影响,填垫厚度不同,盐份、pH 值的变化均具有一定的差异,在含盐量均较高的情况下,填垫 50cm 的全盐在 500 天后下降至 0.35% 左右。填垫 120cm 则稳定在 0.5%~0.8% 的范围之内。同时,从总趋势看,40~60cm 深度的含盐量均高于上层的含盐量,其总量变化在 0.4%~0.6% 范围内波动 ( 图 1、图 2)。

nr20010314-1.gif

图 1 不同层次盐分变化趋势
Fig.1 Trend of different Layer's total salts

nr20010314-2.gif

图 2 不同层次 pH 值变化趋势
Fig.2 Trend of different Layer's pH

5“新土源”对植物的适宜性分析

  为了判断“新土源”对植物生长的影响,在不施肥、盆栽条件下,对 3 年后臭椿的累计生长量比较分析,发现不同配比混合物上栽种的臭椿植株株高表现了明显的差异,各混合物的株高都明显低于种植土,表明混合物的自然肥力较低。但椿树在其两个代谢阶段的可溶性糖、淀粉含量、过氧化物酶活性均未发现特殊的波峰、低谷式突变,形态观察也未见特殊的变异(如:枝条扭曲、节间膨大、叶皱状凹凸等)。证明本基质所采用的三种掺拌废弃物不会给植物的代谢带来特殊的影响(如:严重干扰、强烈抑制、毒害等),只是由于自然肥力的限制使生长势低于种植土。以上试验证明,该混合基质可以满足植物的正常生长,但其肥力基础较差,生产中要加强施肥,这一现象在田间试验中得到了证实:通过施肥后,植物长势,如株高、枝条生长量、胸径等均没有明显的差异(表 4)。几年的园林绿化实践表明该基质适宜于多种植物的生长,目前种植的植物有乔、灌、草共 10 个科 15 种植物,植物长势良好(表 5)。

表 4 田间试验主要树种一年生长量和胸径量
Table.The annual branch growth and circumference of primary plimary in field expreiment

测定指标 一年生枝条生长量 (cm) 胸径量 (cm) 树高 (m)
树种 白蜡 火炬 珠美海棠 白蜡 火炬 珠美海棠 白蜡 火炬 珠美海棠
处理 I 62.00 116.40 199.00 4.88 6.15 4.33 2.18 1.72 1.40
II 72.10 113.90 200.00 3.10 5.30 4.11 2.25 1.70 1.46
III 89.10 105.30 202.00 3.59 5.06 4.00 2.50 1.73 1.51
IV 87.40 104.70 202.00 3.59 4.41 3.50 2.44 1.76 1.27
V 97.80 104.40 146.00 3.16 4.66 3.60 2.20 1.75 1.46

表 5“新土源”试验田栽植的植物
Table.The cultivated plants in artificial soil experimental field

类别 名称 科属 数量(株) 定植时间
乔木 火炬 (Rhus typhina L.) 漆树科 (Anacardiceae) 117 1996
柳树 (Salix matsudana Kooidz) 杨柳科 (Salicaceae) 75 1996
白蜡 (Fraxinus pennsylvanica ar. toumeyiehd) 木犀科 (Oleacaeae) 1854 1996
臭椿 (Ailanthus altissima(Mill.)Swingle) 苦木科 (Simaroubaceae) 6 1996
合欢 (Albizia julibrissin Durazz.) 豆科 (Leguminosae) 6 1996
刺槐 (Robinia pseudoacacia L.) 豆科 (Luguminosae) 875 1998
辽宁杨 (Liaoling Poplar) 杨柳科 (salicaceace) 139   
三倍体毛白杨 (Triploid Poplar) 杨柳科 (salicaceace) 826 1998
灌木 木槿 (Hibiscus syriacus L.) 锦葵科 (Malvaceae) 15 1996
珠美海棠 (Mulus zhumei) 蔷薇科 (Rosaceae) 310 1997
柽柳 (Tamarix spp.) 柽柳科 (Tamaricaceae) 375 1995
月季 (Rosa chinensis Jacq.) 蔷薇科 (Rosaceae) 270 1996
金银木 (Lonicera maackii Maxim) 忍冬科 (Caprifoliaceae) 48 1996
草木 紫花苜蓿 (Medicago sativa L.) 豆科 (Leguminosae) 17000m2 1997
地被菊 (Dendranthema morifolium Tzvel.) 菊科 (Compositae)

  综上所述,在综合比较各配比掺拌混合物的碱化度、脱盐率、pH 值变化、容重和阳离子交换量的基础上,同时结合生产应用的可操作性,我们确定 3∶1 为其最佳配比组合。本技术充分利用了 3 种废弃物优势互补的特性,通过一定比例掺伴,再结合一定的生产、改良措施,克服不足,特别是改变了作为滨海盐土成土母质的海湾泥一些固有特性,降低容重,增大孔隙度和通透性等,人为加速其脱盐作用并抑制其强烈的脱盐碱化作用,为植物和土壤微生物的生命活动创造了条件。同时,通过培肥使土壤微生物的数量和活动强度大大增加,增强了海底淤泥的物质转化和能量流动的能力。通过培肥也促进了土壤有机无机复合胶体、土壤团聚体的形成,使其结构发生了改变。这些过程加速了海底淤泥熟化进程,直接缩短了由海底淤泥(地质沉积过程)到盐渍土(特定的成土过程)再到种植土(人为影响:改良)自然成土过程,有效地抑制了盐渍土改良过程中常伴随的碱化现象,在较短的时间内(1~2 年)能直接达到近似于种植土的肥力水平。从而避免了绿化客土对土地资源和生态环境的破坏;消除了运输客土给周围环境造成的污染和对道路的损坏。它不仅可以作为基建的填垫用土,而且可以作为植物生长的新型基质,从而将废弃物消纳、资源化,将城市生态建设以及克服“客土”方法所带来的负面效应等各方面有机地结合起来,综合效益十分显著,在我国类似地区极具推广价值。

参考文献

1 张万钧,唐廷贵,郭育文,等.盐渍土绿化[M].北京:中国环境科学出版社,1999,4~7.
2 振明,高忠爱,等.固体废物的处理与处置[M].北京:高等教育出版社,1998,267~2 74.
3 G H波尔特,M.M 布鲁金沃特(刘世全,张仁绥译).土壤化学基本原理[M].四川:四川农业大学科技情报室,1986,207~226.
4 朱祖祥.土壤学[M].北京:农业出版社,1982,51~79.

第一作者简介:

张万钧 (1941-),男,河北抚宁县人,正高级工程师,主要从事盐碱土改良和园林绿化工作。曾获国家科技进步二等奖 1 项,市技术发明一等奖 1 项等,曾获“全国十大绿化标兵”等称号。

* 国家重点科技攻关项目 (96-920-21-07)。

本篇文章还收录在以下主题中:废弃物治理∶处置与治理
工业∶工业污染与控制∶有害有毒废弃物
关闭窗口